Реверс однофазного двигателя 220В с конденсатором. Реверс однофазного двигателя 220в с конденсатором

Двигатель
Реверс однофазного двигателя 220в с конденсатором - Реверсивное подключение однофазного асинхронного двигателя своими руками Вид и функционирование реверсивной схемы на 220 В Изменение направления движения мотора Устройство коллекторных движков Асинхронные

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Реверс однофазного двигателя 220В с конденсатором

Без однофазных двигателей и их реверса многие бытовые приборы не могут существовать. А узнать о том, как работают повседневные вещи всегда интересно, не так ли? Сегодня поговорим о реверсе однофазных двигателей 220В, приводящих в работу стиральные машины, мясорубки и некоторые инструменты для маникюра.

Устройство и принцип работы однофазного асинхронного двигателя

Перед тем, как говорить об изменении направления вращения любого двигателя, нужно четко понимать как устроен он и его работа. Поэтому сначала мы поговорим о принципе действия и строении однофазного асинхронного двигателя.

Однофазный двигатель на 220В с конденсатором может обладать мощностью от 5 Вт до 10 кВт. Все зависит от конструктивных особенностей машины. Ротор такого привода, как правило, представляет собой короткозамкнутую обмотку по типу «беличьей клетки». Это алюминиевые стержни, залитые в пазы и замкнутые накоротко.

Обмотки в таком приводе две, несмотря на его название. Они всегда смещены относительно друг друга на 90°. При этом больше места в статоре занимает так называемая главная обмотка.

Однофазный двигатель получил такое имя из-за того, что вместе с двигателем работает только одна, главная (или рабочая), обмотка. По ней протекает переменный ток, создающий магнитное поле, которое время от времени меняется. Можно сказать, что оно состоит из двух полей, которые вращаются навстречу друг другу, а их амплитуда при этом одинаковая.

Закон электромагнитной индукции говорит о том, что магнитные потоки в замкнутых роторных витках вызывают появление индукционного тока. Последний, в свою очередь, взаимодействует с тем полем, которое его порождает. Если все моменты сил, которые действуют на ротор равны нулю, деталь не двигается.

А с началом вращения описанное равенство будет тут же нарушено. Это связано со скольжением витков ротора. Оно будет отличным относительно вращающегося магнитного поля. Следовательно, сила Ампера, которая действует на замкнутые роторные витки со стороны прямого магнитного поля станет больше, чем со стороны обратного магнитного поля.

Возникновение индукционного тока в замкнутых роторных витках возможно только в случае, когда витки пересекают силовые линии поля. Чтобы это произошло, скорость вращения витков должна быть немного меньше той, с которой вращается поле.

Это и послужило источником названия электроприводов такого типа. Их именовали асинхронными.

Механическая нагрузка обратно пропорциональна скорости вращения. Это значит, что если увеличивается величина нагрузки, уменьшается скорость вращения. Величина индукционного тока в роторных витках при этом увеличивается. Из этого следует увеличение и механической мощности привода, а также мощности переменного тока, который он потребляет.

Подведем небольшой промежуточный итог:

  1. Электроток – причина возникновения пульсирующего магнитного поля в статоре двигателя. Его можно рассматривать как два отдельных поля, которые вращаются навстречу с равной амплитудой.
  2. Если ротор не двигается, оба поля становятся причиной появления моментов, равных нулю, но разнонаправленных.
  3. Когда ротор начинает вращаться в одну из сторон, один из моментов будет преобладать над другим, то есть, вращение двигателя будет происходить только в заданную сторону.
  4. При отсутствии специальных механизмов пуска в двигателе, во время старта соответствующий момент будет нулевым, то есть привод не начнет вращаться.

По общепринятым нормам, обеспечит запуск 30 раз в час длительностью 3 секунды каждый. Модели различаются между собой по мощности, частоте вращения, высоте оси вращения, КПД.

Однофазные асинхронные электродвигатели

Мощность такого однофазного двигателя 220В может в зависимости от конструкции находиться в пределах от 5 Вт до 10 кВт. Его ротор — это обычно короткозамкнутая обмотка («беличья клетка») — медные или алюминиевые стержни, замкнутые с торцов.

Такой однофазный двигатель, как правило, имеет две смещенные на 90° друг относительно друга обмотки. Рабочая (главная) при этом занимает большую часть пазов статора, а пусковая (вспомогательная) — оставшуюся. И однофазным его называют потому, что у него лишь одна рабочая обмотка.

Переменный ток, протекающий по главной обмотке, создает периодически меняющееся магнитное поле. Его можно считать состоящим из двух круговых с одинаковой амплитудой, вращающихся навстречу друг другу.

По закону электромагнитной индукции в замкнутых витках ротора меняющийся магнитный поток создает индукционный ток, взаимодействующий с порождающим его полем. Если ротор неподвижен, моменты действующих на него сил одинаковы, вследствие чего ротор остается неподвижным.

Если же ротор начать вращать, то равенство моментов этих сил нарушится, поскольку скольжение его витков относительно вращающихся магнитных полей станет разным. Как следствие — сила Ампера, действующая на витки ротора со стороны прямого магнитного поля, будет значительно больше, чем со стороны обратного.

Индукционный ток в витках ротора может возникать лишь при пересечении ими силовых линий магнитного поля. А для этого они должны вращаться со скоростью, чуть меньшей, чем частота вращения поля (при одной паре полюсов — 3000 об/мин). Отсюда и название, которое получили такие электродвигатели, асинхронные.

При увеличении механической нагрузки скорость вращения уменьшается, возрастает величина индукционного тока в витках ротора. Как следствие — возрастают и механическая мощность двигателя, и мощность потребляемого им переменного тока.

Схема запуска и подключения

Понятно, что раскручивать вручную ротор при каждом запуске электродвигателя неудобно. Для создания первоначального пускового момента и используется пусковая обмотка. Поскольку она составляет с рабочей обмоткой прямой угол, для создания вращающегося магнитного поля ток в ней должен быть сдвинут по фазе относительно тока в рабочей обмотке тоже на 90°.

Добиться этого можно включением в цепь ее питания фазосмещающего элемента. Резистор или дроссель обеспечить фазовый сдвиг в 90° не могут, поэтому в большинстве ситуаций логично использование конденсатора в качестве фазосмещающего элемента. В этом случае однофазный электродвигатель обладает наилучшими пусковыми свойствами.

Когда фазовращающий элемент является конденсатором, однофазные электродвигатели конструктивно могут быть такими:

  • с пусковым конденсатором (рис. а);
  • с пусковым и рабочим (рис. б);
  • только с рабочим конденсатором (рис. в).

Варианты подключения конденсатора к электродвигателю

Первый (наиболее распространенный) вариант предусматривает подключение пусковой обмотки с конденсатором ненадолго на время пуска, после чего они отключаются. Реализовать его можно с помощью реле времени, а то и просто за счет замыкания цепи во время нажатия пусковой кнопки. Эта схема запуска характеризуется сравнительно небольшим пусковым током, но в номинальном режиме характеристики невысоки. Причина в том, что поле статора является эллиптическим (в направлении полюсов оно сильнее, чем в перпендикулярном).

Схема с рабочим, постоянно включенным конденсатором лучше работает в номинальном режиме, но имеет посредственные пусковые характеристики. Вариант с пусковым и рабочим конденсатором является промежуточным между двумя описанными выше. Расчет значений их емкостей сравнительно прост: у рабочего 0,75 мкФ на 1 кВт мощности, у пускового — в 2,5 раза больше.

Коллекторный двигатель переменного тока

Коллекторный двигатель 220в

Рассмотрим коллекторный двигатель переменного тока. Универсальные коллекторные электродвигатели могут питаться от источников как переменного, так и постоянного тока. Они часто используются в электроинструментах, швейных и стиральных машинах, мясорубках — там, где нужен реверс, регулировка частоты вращения ротора или его вращение с частотой более 3000 об/мин.

Обмотки статора и ротора коллекторного электродвигателя соединяются последовательно. К обмоткам ротора ток подводится через щетки, соприкасающиеся с пластинами коллектора, к которым подсоединяются концы обмоток ротора.

Реверс однофазного двигателя с коллектором осуществляется за счет изменения полярности включения в сеть обмоток статора или ротора, а скорость вращения можно регулировать, изменяя величину тока в обмотках.

Основные недостатки такого двигателя:

  • высокая стоимость;
  • сложность устройства, практическая невозможность самостоятельно осуществить его ремонт;
  • значительный уровень шума, трудное управление, создание радиопомех.

Остается добавить, что при использовании устройств, содержащих однофазный электродвигатель, следует самое пристальное внимание уделить выбору его типа, схеме подключения, тому, как правильно осуществить расчет элементов.

Для получения реверса однофазного двигателя с конденсаторным пуском, достаточно обеспечить условие, когда пусковой толчок будет подаваться в другом направлении, чем подавался изначально. Это достигается путем изменения относительного порядка чередования фаз в рабочей и пусковой обмотках.

Вариант 1: переподключение рабочей намотки (однофазный двигатель 220В)

Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

  1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
  2. Вы увидите, что к этой паре подсоединяются две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

Вариант 2: переподключение пусковой намотки (однофазный двигатель 220В)

Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

  1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
  2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

Переподключение пусковой намотки

Переподключение пусковой намотки

После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

Можно сказать, что в момент пуска такой двигатель работает как двухфазный, а после — переходит в однофазный рабочий режим. Ротор однофазного асинхронного двигателя по конструкции самый обычный — короткозамкнутый (типа «беличья клетка») или цилиндрический (полый).

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов – мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 0,1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Схема подключения двигателя через конденсатор

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Оцените статью