Фазовый сдвиг – показатель, описывающий разность исходных фаз двух параметров, имеющих свойство меняться во времени с одинаковыми скоростями и периодами. Именно сдвиг между силой и напряжением определяет, сколько будет значение угла фи.
Коэффициент мощности cos φ: определение, назначение, физический смысл
Коэффициент мощности – это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.
В этой статье мы рассмотрим физическую сущность и основные методы определения cos φ.
Математически cos φ
Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).
Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 – потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем.
Низкий cos φ указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность.
Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.
В энергетике для коэффициента мощности используются следующие обозначения cos φ либо λ. В случае если для определения коэффициента мощности используется λ, его значение выражают в %.
Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением. В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.
Короткое видео о кратким объяснением, что такое коэффициент мощности:
Пример: Для передачи определенной мощности нужен ток 100 А при cos φ = 1. Однако, при cos φ = 0,6 для обеспечения той же мощности нужно будет передать ток 166 А! Соответственно, нужно думать о повышении мощности питающей сети и увеличении сечения проводов…
Косинус угла в электротехнике
Кто хочет, почитайте про cos φ в Википедии, а я расскажу своими словами.
Итак, что такое косинус в электротехнике? Дело в том, что есть такое явление, как сдвиг фаз между током и напряжением. Он происходит по разным причинам, и иногда важно знать о его величине. Сдвиг фаз можно измерить в градусах, от 0 до 360.
На практике степень реактивности (без указания индуктивного либо емкостного характера) выражают не в градусах, а в функции косинуса, и называют коэффициентом мощности:
- P – активная мощность, которая тратится на совершение полезной работы,
- S – полная мощность.
Полная мощность является геометрической суммой активной Р и реактивной Q мощностей, поэтому формулу коэффициента мощности можно записать в следующем виде:
Формула коэффициента мощности через активную и реактивную мощности
В иностранной литературе коэффициент мощности cos φ называют PF (Power Factor). Фактически, это коэффициент, который говорит о сдвиге сигнала тока по отношению к сигналу напряжения.
На самом деле, всё не так просто, подробности ниже.
Легендарный Алекс Жук очень толково рассказал, что такое реактивная мощность, и всё по этой теме:
В видео подробно и доступно изложена вся теория по теме.
Размерности. Что в чём измеряется
Активная мощность Р ⇒ Вт (то, что измеряет домашний счетчик),
Реактивная мощность Q ⇒ ВАР (Вольт · Ампер Реактивный),
Полная мощность S ⇒ ВА (Вольт · Ампер).
Кстати, в стабилизаторах и генераторах мощность указана в ВА. Так больше. Маркетологи знают лучше.
Также маркетологи знают, что на потребителях (например, на двигателях) мощность лучше указывать в Вт. Так меньше.
Минусы и плюсы наличия реактивной составляющей
При питании нагрузки, имеющей только активный характер, сдвиг фаз между током и напряжением равен нулю. Этот случай можно назвать идеальным, при нем можно питающие сети используются полностью, поскольку нет потерь на бесполезную реактивную составляющую.
Реактивная составляющая не так бесполезна. Она формирует электромагнитное поле, нужное для адекватной работы реактивной нагрузки.
В реальной жизни нагрузка, как правило, имеет индуктивный характер (ток отстает от напряжения), и является активно-реактивной. Поэтому всегда, когда говорят о сдвиге фаз и о косинусе, имеют ввиду индуктивную нагрузку.
Уточню: речь идет о промышленной сфере, где эта проблема стоит особенно остро. В быту нагрузка, как правило, имеет емкостной характер. Но учитывая мизерные мощности и высокий cos φ, реактивные мощности в быту не используют.
Основными источниками реактивной составляющей электроэнергии являются трансформаторы и асинхронные электродвигатели.
Чисто реактивная нагрузка бывает только в учебнике. Реально за счет потерь всегда присутствует и активная составляющая тоже.
Реактивная составляющая мощности питания является негативным фактором, поскольку:
- Возникают дополнительные потери в линиях передачи электроэнергии,
- Снижается пропускная способность линий электропередачи,
- Происходит падение напряжения на линиях передачи из-за увеличения реактивной составляющей тока питающей сети,
- Происходит дополнительный нагрев и износ систем распределения и трансформации электроэнергии,
- Возможно появление резонансных эффектов на частотах гармоник, что может вызвать перегрев питающих сетей.
По приведенным причинам необходимо понижать долю реактивной мощности в сети (повышать косинус) – это выгодно и энергоснабжающим организациям, и потребителям с распределенными сетями.
Пример: Для передачи определенной мощности нужен ток 100 А при cos φ = 1. Однако, при cos φ = 0,6 для обеспечения той же мощности нужно будет передать ток 166 А! Соответственно, нужно думать о повышении мощности питающей сети и увеличении сечения проводов…
Реактивная мощность – это часть мощности источника питания, эта мощность была накоплена в магнитном поле, а затем возвращена обратно источнику.
Значение коэффициента мощности рассчитывают при проектировании сетей. Поскольку низкое его значение является следствием увеличения величины общих потерь электроэнергии. Для его увеличения в сетях используют различные способы коррекции, повышая его значение до 1.
Реактивная мощность (Q)
Измеряется в вар (вольт ампер реактивный)
Реактивная мощность является мерой потребления (или выработки реактивного тока). То есть это мощность которая сначала накапливается во внешней электрической цепи (в индуктивности и ёмкости), а потом отдаваемая обратно в сеть на протяжения 1/4 периода.
Реактивная мощность может быть как положительной так и отрицательной.
Появление реактивной мощности связанно с наличием в цепях индуктивной и ёмкостной нагрузки.
Q = I*U*sin φ
Реактивная мощность в отличии от активной не расходуется на прямые нужды (преобразование электрической энергии в другие виды энергии). Она как бы не несёт полезной нагрузки, но без неё невозможно осуществление полезной работы. В настоящий момент прилагается много усилий на уменьшение затрачиваемой реактивной мощности, так как это приводит к уменьшению потребления активной мощности.
Полная мощность (S)
Измеряется в вольт-амперах (BA)
Полная мощность (S) — это произведение действующего напряжения и тока на зажимах цепи. То есть полная мощность это вся мощность затраченная в электрической цепи. Полная мощность складывается из геометрической суммы активной и реактивной мощности.
Как известно сопротивление проводника при переменном токе больше чем при постоянном, в следствии явлений поверхностного эффекта, эффекта близости, возникновение вихревых токов и излучение электромагнитной
Треугольник мощностей
Посмотрите на треугольник мощностей. Вспомним тригонометрию (это что то из математики) вот здесь то она нам и пригодится.
На практике. Если подключить асинхронный двигатель в сеть без нагрузки, в холостую. Напряжение вроде как есть, ток, если замерить тоже есть, при этом ни какой полезной работы не совершается. Соответственно активная мощность минимальна.
Если на двигателе увеличить нагрузку то сдвиг фаз начнет уменьшаться и соответственно косинус фи (cos φ) будет увеличиваться, а с ним и активная мощность.
К счастью счетчики активной мощности фиксируют соответственно только активную мощность. И нам не приходится переплачивать за полную мощность.
Однако у реактивной мощности есть большой минус она создает бесполезную нагрузку на электрическую сеть из-за этого образуются потери.
В КПД все более четко — полезная мощность используется на нагрев — охлаждение — механическую работу, остальное уходит безвозвратно. Эта разница и показывается в КПД.
Треугольник мощностей
Рассматриваемый коэффициент может быть измерен так же, как частное полезного активного значения мощности к общей (S=I*U). Для иллюстрации влияния фазового сдвига на косинус фи применяется прямоугольный треугольник мощностей. Катеты, образующие прямо угол, представляют реактивное и активное значение, гипотенуза – общее. Косинус выделенного угла равен частному активной и общей мощностей, то есть он является коэффициентом, демонстрирующим, какой процент от полной мощности требуется для нагрузки, имеющей место в данный момент. Чем меньший вес имеет реактивный компонент, тем больше полезная мощность.
Важно! Строго говоря, данный параметр полностью соответствует коэффициенту мощности только при идеально синусоидальном движении тока в электросети. Для получения максимально точной цифры требуется анализ искажений нелинейного характера, присущих переменным току и напряжению. В практических подсчетах эти искажения чаще всего игнорируют и полагают показатель cos fi примерно равным требуемому коэффициенту.
Усредненные значения коэффициента мощности
ГОСТы указывают на необходимость корректного указания данной цифры. Для разных типов электроприборов характерные значения находятся в определенных границах:
- Нагревательные компоненты и лампы накаливания, несмотря на присутствие в составе катушек, рассматриваются как строго активная нагрузка, несущественную индуктивную составляющую в этом случае принято игнорировать. Косинус фи для них берут за единицу.
- У ударных и обычных дрелей, перфораторов и подобных ручных инструментов, работающих от электричества, индуктивная нагрузка выражена слабо, индикатор примерно равен 0,95-0,97. Обычно эту цифру не указывают в инструкциях из-за очевидного пренебрежимо малого значения индукции.
- Сварочные трансформаторы, высокомощные двигатели, люминесцентные лампочки несут существенную индуктивную нагрузку. Цифра может иметь значения в диапазоне 0,5-0,85. Ее надо правильно определить и учитывать при эксплуатации, к примеру, при выборе сечения кабелей питания (они не должны перегреваться).