Момент силы: простыми словами и на живых примерах. В чем измеряется момент

Советы и вопросы
В чем измеряется момент - Направление момента силы и его знак Что мы узнали? Сила при вращательном движении Примеры решения задач Знак момента силы

Проблема такого представления в том, что оно не дает направления момента силы, а только его величину, поэтому трудно рассматривать в.м. в 3-хмерном случае. Если сила перпендикулярна вектору r, момент рычага будет равен расстоянию до центра и момент силы будет максимален

Момент силы

Моментом силы считается векторная величина в физической науке, которая равняется векторному произведению радиус-вектора, приведенного от оси вращения к точке приложения силы и ее направления.

Категория характеризует воздействие силы по отношению к твердому телу.

Случается, что велосипедисту приходится раскручивать колесо транспорта рукой. Рука берется за покрышку, т.к. таким способом колесо приводится в действие намного быстрее, чем при хватании велосипеда за спицы, поскольку они расположены ближе к точке оси вращения. Приводимое действие и будет считаться моментом силы, т.е. вращающимся.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Вращающийся и крутящийся моменты не являются идентичными понятиями, поскольку «вращающийся» момент означает внешнее усилие, приложенное к объекту, в то время как «крутящийся» выражается во внутреннем усилии, возникающем в объекте под воздействием нагрузок.

Физическая наука трактует момент силы как вращение.

Единица измерения — ньютон-метр. В теории данную категорию также называют моментом пары сил — этот термин восходит к трудам Архимеда над рычагами. Так, если усилие прикладывается к рычагу перпендикулярно, то момент силы выступает как умножение величины приложенного усилия на расстояние до оси вращения рычага.

В механике линейного движения сила выступает мерой возможности для придания линейного ускорения телу. Аналогично, момент силы точки является мерой возможности сообщения углового ускорения системы. Он также выступает причиной возникновения углового ускорения — две этих категории прямо пропорциональны друг другу.

Так, если мы толкнем дверь дальше от дверных петель, т.е. там, где находится ручка, она откроется легче и быстрее. Отсюда видна разная возможность совершения вращения/поворота. Другой пример. Тяжелый предмет легче удерживается, если прижимать к нему руку вплотную, а не держать ее вытянутой. Таким образом, в указанных случаях момент силы меняется при уменьшении/увеличении рычага воздействия.

Формула моментов выглядит так:

М — момент силы (также обозначается как т), а dL — изменение момента импульса за бесконечно малый промежуток времени dt.

Абсолютная величина момента силы

Абсолютной величиной момента силы признается величина, равная произведению абсолютного значения на плечо данной силы относительно выбранной точки.

Рассмотрим рисунок, приведенный ниже.

Определение момента силы

Здесь продемонстрирован стержень с длиной L. Так, с одной стороны он закрепляется шарнирным соединением к вертикальной плоскости, другой его конец — свободен. На него воздействует F¯. Угол между стержнем и вектором равняется φ. Вращающийся момент следует определить через векторное произведение. Его модуль равняется произведению: абсолютные значения, умноженные на синус угла между ними.

Используя формулы из тригонометрии, прибегаем к следующему равенству:

Возвращаясь к рисунку, переписываем равенство в форму:

Здесь \(d = L*sin(φ)\) — это величина, равная расстоянию от вектора силы оси вращения. F образует больший момент при большем d.

Поскольку угол на координатной плоскости отсчитывается в направлении против часовой стрелки, то момент силы, поворачивающий тело в этом направлении, считается положительным. Если момент силы поворачивает тело по часовой стрелке, он принимается отрицательным.

Момент крутящий и вращающий

В зависимости от источника возникновения момент силы может иметь 2 смысловых понятия:

Оба понятия в общем употреблении могут считаться синонимами, поскольку являются, как правило, одной и той же величиной. Но вращающий момент — это величина, связанная с внешним приложением силы, то есть с источником силы, и возникает в точке или узле приложения силы, приводящей механизм в действие. Рассмотрим это на примере простейшей схемы такого механического взаимодействия, как закручивание гайки с помощью ключа. К самому ключу прикладывается сила, которая сообщает системе вращающий момент (момент вращения). И одновременно на закручиваемой гайке, как на ведомом элементе механизма возникает крутящий момент.

Что такое крутящий момент простыми словами на примере более сложного механизма, например, турбокомпрессора автомобиля, можно подробнее почитать на сайте https://centr-turbin.com. Турбокомпрессор используется для повышения кпд и мощности двигателя за счет использования энергии выхлопа автомобиля, которые поступают в турбину, приводя в движение ось турбокомпрессора, обеспечиваюший принудительный приток воздуха в камеру сгорания цилиндра двигателя. На схеме движение выхлопных газов в турбинной части показано красным цветом, а движение воздуха в компрессорной части — синим.

В этом случае вращающий момент придается механизму под действием выхлопных газов в турбинной его части. Одновременно с этим на оси турбокомпрессора возникает крутящий момент, который передает вращение на рабочее колесо компрессора, нагнетающее воздух в цилиндры двигателя.

Сила есть — ума не надо?

И еще немного о самом простом. Вернемся к тому же банальному закручиванию гайки. Чтобы быть закрученной, гайке нужно получить крутящий момент определенной величины. Причем независимо от прилагаемого для этого усилия. На схеме — длина рукоятки ключа 200 мм или 0,2 м. Чтобы закрутить гайку, взявшись за конец ключа, нужно передать ей крутящий момент, равный 100 Н * 0,2 м = 20 Н*м. Но взявшись закручивать гайку посередине рукоятки использовав половинное плечо в 100 мм, мы ей должны дать те же 20 Н*м, но при этом приложить вдвое больше силы:
200 Н * 0,1 м = 0,2 м

Именно поэтому на практике, для того, чтобы потратить меньше силы для получения одинакового результата, нужно использовать больший размер плеча. Будь это закручивание гайки или переворачивание тяжелого камня. Потому что момент — это физическая величина, характеризующая вращательное движение. Грубо говоря, момент — это и есть само вращение. А состоит вращение из двух компонентов: силы и плеча. Причем этим плечом может быть как длина рукоятки гаечного ключа, так и радиус турбинного колеса.

Вращательное движение отличается от поступательного тем, что различные точки проходят различное расстояние и имеют различную мгновенную скорость, в зависимости от расстояния до оси вращения. Сила, приложенная к вращающемуся телу, также по-разному влияет на точки, лежащие на разном расстоянии от оси.

Основной единицей измерения момента силы в системе СИ является: M=Н•м

Задание. На рис.1 показано тело, которое имеет ось вращения OO’. Момент силы, приложенный к телу относительно заданной оси, будет равен нулю? Ось и вектор силы расположены в плоскости рисунка.

Решение. За основу решения задачи примем формулу, определяющую момент силы:

В векторном произведении (видно из рисунка) $\bar \neq 0, \bar \neq 0$ . Угол между вектором силы и радиус – вектором также будет отличен от нуля (или $180^$), следовательно, векторное произведение (1.1) нулю не равно. Значит, момент силы отличен от нуля.

Ответ. $\bar \neq 0$

Мы помогли уже 4 372 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Задание. Угловая скорость вращающегося твердого тела изменяется в соответствии с графиком, который представлен на рис.2. В какой из указанных на графике точек момент сил, приложенных к телу равен нулю?

Решение. Момент сил, приложенных к вращающемуся твердому телу можно найти при помощи основного закона вращательного движения:

где $\varepsilon$ угловое ускорение вращения тела.его в свою очередь можно выразить через угловую скорость вращения тела как:

Перепишем (2.1), используя (2.2), имеем:

Так как $I \neq 0$ (момент инерции не равен нулю), то для выполнения условия M=0 должна быть равна нулю производная от угловой скорости по времени. Производная равна нулю в экстремуме. На рис. экстремумом является точка 3.

Итак, берем точку Q — полюс, относительно которой рассчитывается момент силы. Далее следует провести радиус-вектор r из Q к F — точке приложения. Далее категория рассчитывается так:

Правило моментов

Тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

Иначе правило моментов можно сформулировать так:

Сумма моментов сил, вызывающих вращение тела по часовой стрелке, равна сумме моментов сил, вызывающих вращение тела против часовой стрелки.

∑ M п о ч а с . с т р . = ∑ M п р . ч а с . с т р .

Условия равновесия тел

∑ → F i = 0 ; → v o = 0 и ∑ → F i = 0 ; → v o = 0

Простые механизмы — приспособления, служащие для преобразования силы. К ним относится рычаг, наклонная плоскость, блоки, клин и ворот.

Наклонная плоскость

Дает выигрыш в силе. Чтобы поднять груз на высоту h, нужно приложить силу, равную силе тяжести этого груза. Но, используя наклонную плоскость, можно приложить силу, равную произведению силы тяжести на синус угла уклона плоскости:

Рычаг

Дает выигрыш в силе, равный отношению плеча второй силы к плечу первой:

Неподвижный блок

Изменяет направление действия силы. Модули и плечи сил при этом равны:

Подвижный блок

Делит силу на две равные части, направление которых зависит от формы клина:

При использовании простых механизмов мы выигрываем в силе, но проигрываем в расстоянии. Поэтому выигрыша в работе простые механизмы не дают.

Задание EF22660

Алгоритм решения

Известна лишь масса батона: m1 = 0,8 кг. Но мы также можем выразить плечи для силы тяжести батона и хлеба. Для этого длину линейки примем за один. Так как линейка поделена на 10 секций, можем считать, что длина каждой равна 0,1. Тогда плечи сил тяжести батона и рыба соответственно равны:

Сила тяжести равна произведению массы на ускорение свободного падения. Поэтому:

m 2 = m 1 d 1 d 2 . . = 0 , 8 · 0 , 3 0 , 4 . . = 0 , 6 ( к г )

pазбирался: Алиса Никитина | обсудить разбор | оценить

тр относительно оси, проходящей через точку О3 перпендикулярно плоскости чертежа, равно.

Алгоритм решения

  1. Сформулировать определение плеча силы.
  2. Найти плечо силы трения и аргументировать ответ.

Плечом силы трения называют кратчайшее расстояние от оси вращения до линии, вдоль которой действует сила. Чтобы найти такое расстояние, нужно провести из точки равновесия перпендикуляр к линии действия силы трения. Отрезок, заключенный между этой точкой и линией, будет являться плечом силы трения. На рисунке этому отрезку соответствует отрезок О3В.

Теперь запишем бесконечно малую работу через новые равенства \right| \sin» width=»» height=»» /> или \right| \sin <\left (\alpha \right )>d\varphi» width=»» height=»» />.

Специальные случаи

Формула момента рычага

Очень интересен особый случай, представляемый как определение момента силы в поле:

= МОМЕНТ_РЫЧАГА * СИЛА

Проблема такого представления в том, что оно не дает направления момента силы, а только его величину, поэтому трудно рассматривать в.м. в 3-хмерном случае. Если сила перпендикулярна вектору r, момент рычага будет равен расстоянию до центра и момент силы будет максимален

= РАССТОЯНИЕ_ДО_ЦЕНТРА * СИЛА

Сила под углом

Если сила F направлена под углом θ к рычагу r, то M = r*F*sinθ, где θ это угол между рычагом и приложенной силой

Статическое равновесие

Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для 2-хмерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0, ΣV=0 и момент силы в третьем измерении ΣM=0.

Момент силы как функция от времени

\over dt> \,\!» width=»» height=»» /> ,

где L — момент импульса. Момент импульса твердого тела может быть описан через произведение момента инерции и угловой скорости.

\,\!» width=»» height=»» /> ,

То есть, если I постоянная, то

\over dt>=I\boldsymbol \,\!» width=»» height=»» /> ,

где α — угловое ускорение, измеряемое в радианах в секунду за секунду.

Отношение между моментом силы и мощностью

Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работу. Также если момент силы совершает действие через угловое расстояние, он совершает работу.

= МОМЕНТ_СИЛЫ * УГЛОВАЯ_СКОРОСТЬ

В системе СИ мощность измеряется в Ваттах, момент силы в ньютон-метрах, а УГЛОВАЯ СКОРОСТЬ в радианах в секунду.

Оцените статью