Регулятор мощности нагрузки. Симисторный регулятор мощности для индуктивной нагрузки

Советы и вопросы
Симисторный регулятор мощности для индуктивной нагрузки - Схема №1. Принцип работы и цели применения Подготовительные работы 2 Самые распространенные схемы РН 0-220 вольт своими руками Простой регулятор мощности устройства своими руками

Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Содержание

Сетевой регулятор мощности на MOSFET-транзисторах с фазоимпульсным управлением

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Проще ли купить диммер

Они уменьшают его величину, а соответственно, и потребляемую мощность. По законам Джоуля-Ленца и Ома для электрической цепи. Эффективное регулирование мощности нагрузки обеспечивают специальные технические решения. А любая схема регулятора мощности содержит полупроводниковый коммутатор. Кто желает поскорее обрести возможность гибкого управления своими электроприборами, может легко купить простой регулятор мощности. Им является диммер. Разнообразные модели этого устройства продаются в торговых сетях.

Очень удобен такой регулятор на даче. Он будет замечательным дополнением к маленькому кипятильнику или одно-, двухконфорочной электроплитке. Теперь в ходе приготовления еды не будет подгорания и слишком сильного кипения.

Покупая регулятор мощности, обязательно удостоверьтесь в его соответствии решаемым задачам. Он должен быть мощнее управляемого электрооборудования. Большинство моделей диммеров рассчитано на обслуживание квартирного освещения. По этой причине они в основном регулируют мощность до 300 Вт.

Не нашел в магазине — сделай сам

Чтобы приобрести более мощную модель, придется поискать ее в торговых сетях. Альтернативное решение — просмотр схем регуляторов мощности, изготовление своими руками выбранной модели. Чтобы помочь нашим читателям выбрать оптимальную схему, более подробно опишем главные особенности этих устройств. Регулятор на полупроводниковом ключе может быть выполнен на

Будет интересно➡ Как проверить конденсатор при помощи мультиметра

Регулятор мощности, схема которого содержит любой из перечисленных полупроводниковых ключей, всегда пребывает в одном из двух состояний. Он либо максимально ограничивает ток (отключает нагрузку), либо почти не оказывает сопротивления (подключает нагрузку).

При срабатывании сопротивление переходов полупроводниковых приборов быстро изменяется по величине. Каждому его значению соответствует определенная электрическая мощность. Она выделяется как тепло и носит название динамических потерь. Чем быстрее срабатывает прибор (отключает или подключает нагрузку), тем меньше динамические потери.

Наиболее быстродействующими ключами являются транзисторы. Но они и включаются и выключаются при любой ненулевой величине напряжения. Если эти процессы происходят вблизи его амплитудного значения, динамические потери будут максимально большими. Обычный тиристорный ключ отличается тем, что выключается без управляющего сигнала при переходе тока нагрузки через ноль. Хотя его включение происходит при той же амплитуде переменного напряжения, что и у транзисторов.

Выбераем триак

По этой причине схема тиристора, а особенно симисторного регулятора мощности получается более простой, экономичной и надежной. Особенно если он быстро включается. У регулятора мощности на симисторе кроме него нет больше полупроводниковых приборов, по которым течет ток нагрузки. А у регуляторов с остальными ключами такими приборами обязательно будут выпрямительные диоды, в том числе встроенные.

Поэтому рекомендуем остановиться на симисторах — схемы с ними есть во многих справочниках, популярных журналах а, следовательно, и в интернете. Их легко найти и выбрать что-либо приемлемое. Первый регулятор мощности на симисторе КУ208Г используется уже много лет, начиная с 80-х годов прошлого века.

Современные симисторы в регуляторах

Устаревший дизайн КУ208Г не всегда удобен для размещения в корпусе регулятора. Новая модель BT136 600E, у которой параметры включения и регулировки примерно такие же, позволит собрать более компактный симисторный регулятор мощности. С этой моделью из-за ее компактности получается значительно больше вариантов конструкции, из которых можно выбирать.

При срабатывании сопротивление переходов полупроводниковых приборов быстро изменяется по величине. Каждому его значению соответствует определенная электрическая мощность. Она выделяется как тепло и носит название динамических потерь. Чем быстрее срабатывает прибор (отключает или подключает нагрузку), тем меньше динамические потери.

Как работает регулятор мощности в трансформаторе

В трансформаторе обычно используется симисторный регулятор мощности для индуктивной нагрузки. Он работает как электронный ключ, раскрываясь и запираясь, причем частота задается схемой управления. Ток по симистору проводится в 2 направлениях, поэтому его часто используют для сетей переменного тока.

Схема регулятора напряжения на симисторе для трансформатора

При подключении к трансформатору на один из электродов стабилизатора подается переменный ток, на управляющий электрод — отрицательное управляющее напряжение (с диодного моста). Когда порог включения повысится, симистор раскроется и пустится ток. В момент смены полярности на входе симистор закроется.

Важно! Вся последовательность действий повторяется неоднократно.

Разновидности регуляторов мощности

Для разных целей используются различные регуляторы мощности.

Тиристорный прибор управления

Конструкция устройства довольно простая. Обычно тиристоры применяются в маломощных приборах. Тиристорный терморегулятор состоит из биполярных транзисторов, самого тиристора, конденсатора и нескольких резисторов.

Тиристорный транзисторный регулятор

Транзисторы образуют импульсный сигнал, когда конденсаторное напряжение уравнивается с рабочим, они открываются. Электросигнал передается на вывод тиристора, после чего происходит разрядка конденсатора и запирание ключа. Вся последовательность действий повторяется циклически.

Обратите внимание! Величина задержки обратно пропорциональна мощности, которая поступает в нагрузку.

Симисторный преобразователь мощности

Симистор — подвид тиристора, в котором несколько больше переходов p-n, из-за чего его принцип работы несколько иной. Но часто симистор считают отдельным видом стабилизатора мощности. Конструкция представляет собой 2 тиристора, подключенных параллельно и имеющих общее управление.

К сведению! Отсюда и происходит название «симистор» — «симметричные тиристоры». Иногда он еще называется ТРИАК (TRIAC).

Схема 2 параллельно подключенных тиристоров (слева) и симистора (справа)

На схеме видно, что у симистора вместо анода и катода указаны обозначения Т1 и Т2. Все потому, что понятия «катод» и «анод» в данном случае не имеют смысла, так как электроток может выходить через оба вывода.

Симисторные универсальные регуляторы имеют ряд плюсов, в их числе небольшая цена, долгий срок службы и отсутствие подвижных контактов, которые могут быть источниками помех. Но есть и недостатки: подверженность помехам и шумам, отсутствие поддержки высоких частот переключения.

Важно! Их не применяют в мощных промышленных установках, вместо этого там используют тиристоры или IGBT транзисторы.

Фазовый способ трансформации

Фазовая трансформация происходит в так называемых диммерах. Используются такие приборы, к примеру, для изменения интенсивности освещения галогенных ламп или лампочек накаливания. Электросхема обычно воплощается на специальных микроконтроллерах, в которых используется своя интегрированная электросхема снижения напряжения. Благодаря своей конструкции диммеры могут плавно снижать мощность.

Из минусов таких устройств высокая чувствительность к помехам, высокий коэффициент пульсаций и маленький коэффициент мощности сигнала на выходе. Чтобы стабилизировать диммер, используются сдвоенные тиристоры.

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Симисторный регулятор мощности с широким диапазоном регулировки

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Ну так померяйте напряжение на усилителе в этот момент, может где то ещё есть резистор увеличил номинал, что то греется.

makcucm8, собрал, но не заработало. взял S8050 и 100к в качестве R2. схема сразу перешла в «ночной» режим. вот таким образом.

Саша Юр.

нашел. SMD резистор сменил номинал 10 Ом на 1,8 кОм позиция R64 стоит в цепи 9в. звук появился. 9в. вольт идет с транзистора BD435 через стабилитрон. оба были пробиты. Стаб. замерять никак, но судя по схеме должно получиться 9в. Сам стаб. розовая стекляшка с голубой полоской, по инфе с инета 8.2в снял 3 штуки с донора все они при замере показали разный номинал. Общем с нагрузкой на шлейфе получилось 8.4в а VDD на РТ7313 7.8в. звук нормальный Обнаружилась другая проблема я внимания не обращал. на дисплее видно картинку когда смотришь с верху и мигает подсветка кнопок и дисплей в такт музыки если подкл. динамик

finn32

Это не важно. Управление по шинам питания- тупиковая ветвь усестроения. Переусложнение для нормальной линейности- первая побочка. Можно посмотреть, чего туда только не навешали, а толку чуть. Меж тем уже работает прототип симметричного усилителя с 4-мя и 6-ю транзисторами в УН, имеющий под 120 дб/20 кГц петлевого и прогнозируемые искажения ниже ПараФинна. Особого смысла строить УМ с управлением по шинам нет.

Там схему Гумеля жевали и она отличается. Выходной каскад ОУ в предлагаемой схеме работает в очень облегченном режиме. Выходное напряжение на ВЧ — 70 мВ от пика до пика. На средних частотах — микровольты. Можно даже режим ВК ОУ перевести из АВ в А замкнув выход ОУ и + питания ОУ резистором 20-30кОм. Далее — при перегрузке все более-менее красиво, никахих возбудов при симуляции, не как у Гумели. В самом ОУ всё кроме выходного каскада работает в режиме класса А, токи 500-600 мкА. Основные искажения вносит выходной каскад — неравномерность тока базы на ВЧ первого транзистора в тройке. ОУ искажений не вносит. Гумеля.asc MA544_53v.asc

Здравствуйте всем, подскажите пжл каким конденсатором можно заменить конденсатор в электросчетчике? Вообще на фото это пленочный с подавлением ЭМП? Эл.счетчик Энергомера ЦЭ6807П фото ниже

Похожий контент

Добрый день всем!
Собрал драйвер для тиристоров на китайских трансформаторах 3:1:1 12—24V
На индуктивной нагрузке с одной управляемый фазой работает отлично, подгонял импульсы и токи управления как на готовом упп с 2мя тиристорными модулями.
Проблемы начались при соединении в звезду как трансформатора так и мотора индуктмвностью 56мгн 3фазы 4квт.
Тиристору обеспечивался ток 100ма как в даташит mtc110-12 Китай, импульсы по книге о проектировании упп и регуляторов 60-70градус минимум максимум 120, синхронизация есть как линейная так ифазная, работает с регулировкой 10 градусов всего и дальше срыв на синхронизации треугольник коммутации ,обороты набирает максимальные на 160- 180 вольт, в синхро звезда работать не хочет сразу прирывистые полные обороты есть куча осциллограм видео книжка и т. Д
Вопрос такой : возможно имеет место превышение du/dt и выброс эдс срывает коммутацию , истинная роль снаббера для тиристора и как подобрать номинал RC цепочки? Чем может помочь варистор? Как обеспечить надёжное открытие и закрытие тиристора (использовал 100ом и 10-100нф и из-за него вылетел один тиристор в схеме звезда без нейтрали, без снаббера было лучше сейчас использую симисторы bta24 snubberless )
521bbae.djvu
Фотки и осциллограмы

В программе с синхронизацией по схеме треугольник есть функция определения направления фаз так что они не слепаются

Denis Shestakov

Доброго всем времени суток.
Во время ремонта дома совершил ошибку —
Приобрел лампы для обычного диммера с крутилкой — Legrand Valena Life, а они оказались не диммйируемые Катастрофа. Лампа от компании JazzWay, модель PTR 2310, устанавливается на трек, заявленная мощность 10w. Сама из себя представляет алюминиевый цилиндр радиусов 8 см и длиной 40см.
Когда я понял какую ошибку я совершил первое что пришло в голову это было разобрать и посмотреть что там внутри) Оказалось что с торцов этого цилиндра просто на резьбе вкручены заглушка и стопор для линзы. Под которыми я обнаружил драйвер (наверно это так называется) и светодиод с маркировкой LM002. Фото я приложу в посту. Во время работы он выйдет 73в на контакты светодиода. Мощность 130мА, хотя в этом я не уверен так как не совсем понимаю как правильно измерить это, в разрыв линии или тоже с клейм. (замер делал на клеймах светодиода как и вольтаж)
Далее вопрос —
Какие есть возможности переделать лампу в диммируемую и какой будет бюджет?
Возможно ли заменить этот источник питания на диммируемый без замены светодиода?
Возможно, например, приобрести лампочку с подобным или подходящим по тех светодиодном и заменить плату или все целиком с сохранением штатных мест?

Прошу помощи у понимающих в этой теме людей )))
Help

Гость aoleynik

Привет! Купил в кухню вот такой диммер: https://a.aliexpress.com/_9QIqxE. В общем он работает как надо, правда, свистит немного. Но если включить индукционную плиту на максимальный режим, когда диммер выдаёт не 100% мощности, она начинает довольно сильно гудеть и, например, чайник начитает вибрировать. Выкручивание мощности диммера до 100% мгновенно решает проблему. Может кто-то сталкивался и подскажет как можно уменьшить влияние диммера на плиту?
В описании диммера есть вот такая строка: This dimmer only support leading edge, don’t support trailing edge. Может это и есть причина? Для меня это темный лес. Заранее спасибо.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.

Самостоятельная сборка

В состав типовой схемы регулятора на симисторах входят следующие обязательные узлы и элементы:

  • выпрямительные диоды (или мостик);
  • регулировочный резистор, ручка которого выводится на переднюю панель самодельного устройства;
  • ограничивающий динистор любого типа;
  • симистор BTA16-000;
  • индикаторный светодиод вместо неонки;
  • предохранитель.

После того как все эти детали спаяны в схему, потребуется проверить порядок работы каждого из отдельных модулей. Для этого необходимо пройтись по всей цепочке от входа до нагрузки.

Выпрямленное диодами переменное напряжение 220 Вольт через регулировочный резистор поступает сначала на ограничивающий элемент, а затем – на управляющий электрод BTA16-000. В зависимости от положения ручки потенциометра симистор будет открываться больше или меньше, изменяя величину мощности, отдаваемую в нагрузку. По этому описанию собранная схема проверяется на корректность ее сборки и работы.

Посредством такого несложного регулятора удается плавно изменять выходную мощность паяльника или настольной лампы, например.

Настройка регулятора

После завершения паяльных работ и всех необходимых подключений можно переходить в проверке самодельного изделия на работоспособность. При обнаружении отклонений от нормальных режимов, заданных описанием схемного решения, потребуется настройка прибора. Она заключается в проверке каждого из элементов по току и напряжению. Для этого удобнее всего запастись специальным прибором – мультметром, а еще лучше – электронным осциллографом.

Перед проведением настройки важно помнить о том, что симистор в этой схеме выполняет функцию фазового регулятора. Его основное назначение – переключение цепи в момент перехода полуволной напряжения нулевой точки с учетом величины эксплуатируемой в данное время нагрузки.

В исходном состоянии симистор закрыт, поскольку напряжение на его управляющем электроде не достигло нужной величины. По мере заряда конденсатор через цепочку, открывшуюся за счет поступления полуволны напряжения, потенциал на нем и на подключенном параллельно динисторе постепенно возрастает.

Указанные процессы хорошо видны на экране осциллографа, при наличии которого настройка прибора заметно упростится.

По достижении напряжением в этой точке величины примерно 30 Вольт, динистор и симистор одновременно открываются на время равное полупериоду волны. За счет периодически повторяющейся с частотой 50 Герц коммутации управляющей цепочки удается изменять величину мощности в нагрузке в заданных пределах.

При наличии опыта работы с паяльником и электронными приборами собрать и настроить управляющее устройство удается без особого труда. Главное – внимательность и строгое следование приведенным инструкциям.

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Как работает устройство

Ток, который протекает через динистор, ограничивается постоянным резистором. Именно с его помощью происходит корректировка длины импульса. С помощью предохранителя происходит защита цепи от КЗ. Нужно отметить тот факт, что динистор в каждой полуволне открывается на один и тот же угол.

Поэтому выпрямление протекающего тока не происходит, можно подключить даже индуктивную нагрузку к выходу. Поэтому использоваться может симисторный регулятор мощности и для трансформатора. Для того чтобы подобрать симисторы, нужно учесть, что для нагрузки в 200 Вт необходимо, чтобы ток был равен 1 А.

В схеме используются такие элементы:

Особенности схемы регулятора

Такая схема является самой распространенной, но можно встретить и небольшие ее вариации. Например, иногда вместо динистора ставят диодный мостик. В некоторых схемах встречается цепочка из емкости и сопротивления для подавления помех. Существуют и более современные конструкции, в которых применяется схема управления на микроконтроллерах. При использовании такой схемы вы получаете точную регулировку тока и напряжения в нагрузке, но реализовать ее сложнее.

Для того чтобы собрать симисторный регулятор мощности для электродвигателя, вам достаточно придерживаться такой последовательности:

Теперь можно приступить непосредственно к сборке устройства.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника. К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Регулятор мощности на симисторе bta41

Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Регулятор мощности на симисторе bta41

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.

Регулятор мощности на симисторе bta41

Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

4 вопроса по теме регуляторов напряжения

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

Обратите внимание! Обычный реостат можно сделать и самому, для этого понадобится только проволока из нихрома или константана. Ее необходимо намотать на оправку, при этом изменение проходящей мощности происходит за счет регулировки длины проволоки.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой. Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007;
  • D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника. К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью

  • Резисторы: R1 – 18 кОм (2 Вт); R2 – 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 – 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 – 22 мкФ х 50 В; С2 – 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 – 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Устройство диммера

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В – При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Проще ли купить диммер

Они уменьшают его величину, а соответственно, и потребляемую мощность. По законам Джоуля-Ленца и Ома для электрической цепи. Эффективное регулирование мощности нагрузки обеспечивают специальные технические решения. А любая схема регулятора мощности содержит полупроводниковый коммутатор. Кто желает поскорее обрести возможность гибкого управления своими электроприборами, может легко купить простой регулятор мощности. Им является диммер. Разнообразные модели этого устройства продаются в торговых сетях.

Очень удобен такой регулятор на даче. Он будет замечательным дополнением к маленькому кипятильнику или одно-, двухконфорочной электроплитке. Теперь в ходе приготовления еды не будет подгорания и слишком сильного кипения.

Как сделать регулятор мощности на симисторе своими руками

Покупая регулятор мощности, обязательно удостоверьтесь в его соответствии решаемым задачам. Он должен быть мощнее управляемого электрооборудования. Большинство моделей диммеров рассчитано на обслуживание квартирного освещения. По этой причине они в основном регулируют мощность до 300 Вт.

Не нашел в магазине — сделай сам

Чтобы приобрести более мощную модель, придется поискать ее в торговых сетях. Альтернативное решение — просмотр схем регуляторов мощности, изготовление своими руками выбранной модели. Чтобы помочь нашим читателям выбрать оптимальную схему, более подробно опишем главные особенности этих устройств. Регулятор на полупроводниковом ключе может быть выполнен на

Регулятор мощности, схема которого содержит любой из перечисленных полупроводниковых ключей, всегда пребывает в одном из двух состояний. Он либо максимально ограничивает ток (отключает нагрузку), либо почти не оказывает сопротивления (подключает нагрузку).

При срабатывании сопротивление переходов полупроводниковых приборов быстро изменяется по величине. Каждому его значению соответствует определенная электрическая мощность. Она выделяется как тепло и носит название динамических потерь. Чем быстрее срабатывает прибор (отключает или подключает нагрузку), тем меньше динамические потери.

Наиболее быстродействующими ключами являются транзисторы. Но они и включаются и выключаются при любой ненулевой величине напряжения. Если эти процессы происходят вблизи его амплитудного значения, динамические потери будут максимально большими. Обычный тиристорный ключ отличается тем, что выключается без управляющего сигнала при переходе тока нагрузки через ноль. Хотя его включение происходит при той же амплитуде переменного напряжения, что и у транзисторов.

Выбераем триак

По этой причине схема тиристора , а особенно симисторного регулятора мощности получается более простой, экономичной и надежной. Особенно если он быстро включается. У регулятора мощности на симисторе кроме него нет больше полупроводниковых приборов, по которым течет ток нагрузки. А у регуляторов с остальными ключами такими приборами обязательно будут выпрямительные диоды, в том числе встроенные.

Поэтому рекомендуем остановиться на симисторах — схемы с ними есть во многих справочниках, популярных журналах а, следовательно, и в интернете. Их легко найти и выбрать что-либо приемлемое. Первый регулятор мощности на симисторе КУ208Г используется уже много лет, начиная с 80-х годов прошлого века.

Оцените статью