Самарский государственный технический университет». Режимы работы асинхронного двигателя

Двигатель
Режимы работы асинхронного двигателя - S1 — продолжительный режим Трехфазный асинхронный двигатель с короткозамкнутым ротором Л. А. Елисеева © Федеральное государственное бюджетное учреждение науки Государственная публичная научно-техническая библиотека Сибирского отделения ран (гпнтб со ран), 2013 Динамическое торможение. Трехфазный переменный ток

В двигательном режиме работы МДС статора опережает МДС ротора на угол 90°, который поддерживается с помощью ДПР. В тормозном режиме МДС статора отстаёт от МДС ротора, угол 90° так же поддерживается с помощью ДПР.

3.1 Генераторное торможение с отдачей энергии в сеть

Как все электрические машины, асинхронная машина, обратима. Если к валу асинхронной машины приложен тормозной статический момент, то она, преодолевая внешний момент, работает как двигатель и потребляет мощность из сети. Если внешний статический момент на валу двигателя отсутствует, то двигатель, подключенный к сети, будет вращаться со скоростью, близкой к синхронной. При этом из сети потребляется энергия, необходимая для покрытия потерь. Если же с помощью первичного двигателя вращать ротор с синхронной скоростью, то есть будет покрывать только потери статора, а потери ротора (механические и в стали) будут покрываться первичным двигателем.

Рассмотрим работу двигателя при скорости выше синхронной. В этом случае ротор будет вращаться со скоростью большей, чем скорость магнитного поля. Это приводит к изменению направления пересечения обмоток ротора магнитными силовыми линиями поля статора (в двигательном режиме ротор отставал от поля статора). Следовательно, изменится направление ЭДС, наводимой в статоре, и направление статорного тока, т.е. теперь энергия будет отдаваться в сеть.

Указанное явление можно объяснить векторной диаграммой АД в генераторном режиме, представленной на рис. 4.10. При переходе в генераторный режим ЭДС ротора меняет свой знак Е22·S, т.к. приведенный ток ротора в этом случае

Рекомендуемые материалы

т.е.
0 и составляющие — положительны, причём
В генераторном режиме S2=180 0 ). Физически это объясняется тем, что поле вращается относительно ротора по сравнению с двигательным режимом в обратную сторону. При этом изменяется и знак ЭДС

Двигатель переходит в генераторный режим. Электромагнитный момент также меняет свой знак и он становится тормозным. Следовательно, двигатель работает уже генератором параллельно с сетью, и отдает электрическую энергию, потребляя при этом реактивную мощность для возбуждения. Следует заметить, что асинхронная машина как в двигательном, так и в генераторном режиме потребляет реактивную энергию из сети, т.е. генераторный режим возможен только при наличии сети, которая способна снабжать асинхронный генератор реактивной мощностью, необходимой для создания магнитного поля.

Часто характеристики, соответствующие генераторному скольжению, будут располагаться во втором квадрате (II). Поэтому данному режиму будут соответствовать значения скольжения от “0” до “-

Торможение с рекуперацией энергии в сеть используется в подъемно транспортных устройствах при спуске тяжелых грузов. Под действием опускающегося груза асинхронная машина начинает вращаться со скоростью Мс и груз будет спускаться с установившейся скоростью.

Для этого, чтобы обеспечить нормальный тормозной спуск груза статический момент не должен превосходить критического момента машины в генераторном режиме.

Если на валу механизма имеется реактивный, статический момент, то торможение с рекуперацией энергии в сеть возможно только в случае использование асинхронного двигателя с переключением числа пар полюсов.

Предположим, что обмотки статора включены таким образом, что они обеспечивают меньшее число пар полюсов, т.е. двигатель работает в точка А, на высшей скорости

Если обмотки переключить на меньшее число пар полюсов p2, то двигатель перейдёт работать в точку В на характеристику 2, проходящую через точку

Скорость вращения двигателя при переключении окажется больше синхронной скорости, соответствующей новому числу полюсов, т.е.

Машина перейдет в режим генератора. На рис. 4.10 область с отдачей энергии в сеть соответствует участку ВСД механической характеристики.

Этот процесс применяется (имеет место) например в приводах металлорежущих станков при переключении скоростей двигателя.

Примеры применения: в составе регулируемого привода для насосов, вентиляторов, конвейеров и т.п. или для применения в качестве замены обычных асинхронных двигателей.

Похожие документы:

. Самарский государственный технический университет 2007 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Самарский государственный технический университет .

. летия со дня основания Самарского государственного технического университета в 2014г. Научные мероприятия . Бичуров Г.В. 21 Открытие профильных технических классов в течение 2014г. . взаимодействие с Советом ректоров Самарской области, в рамках проведения .

Решение ученого совета Самарского государственного экономического университета (1)

. года. Ученая степень доктора технических наук присуждена Решением Высшей аттестационной . ГАК в Самарском государственном архитектурно-строительном университете с 2006 г. Является Председателем ГЭК в Тольяттинском государственном университете с 2011 г. .

. и для исторических реконструкций Ю.П. Шубин Донбасский государственный технический университет, г. Алчевск, Украина; info@dmmi.edu . Д.В. Приложение. Химический состав металлических предметов Самарского клада / Наумов Д.В., Миняев С.С. // Бочкарёв В.С. .

При этом ток и момент изменяют свой знак. Момент станет тормозным и двигатель быстро остановится. Механическая характеристика такого режима противовключения показа на рис. 4.12. Режим противовключения соответствует участку ВС механической характеристики.

Управление асинхронным двигателем

    Способы подключения асинхронного электродвигателя к сети питания:
  • подключение от устройства плавного пуска

Прямое подключение к сети питания

Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.

С помощью магнитных пускателей можно реализовать схему:

Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.

Нереверсивная схема

Нереверсивнпя схема подключения трехфазного асинхронного двигателя через магнитный пускатель

Нереверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитный пускатель
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, SB1 — кнопка остановки, SB2 — кнопка пуска, KM1 — магнитный пускатель, KK1 — тепловое реле, HL1 — сигнальная лампа, M — трехфазный асинхронный двигатель

Реверсивная схема

Реверсивная схема подключения трехфазного асинхронного двигателя через магнитные пускатели

Реверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитные пускатели
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, KM1, KM2 — магнитные пускатели, KK1 — тепловое реле, M — трехфазный асинхронный двигатель, SB1 — кнопка остановки, SB2 — кнопка пуска «вперед», SB3 — кнопка пуска «назад» (реверс), HL1, HL2 — сигнальные лампы

Недостатком прямой коммутации обмоток асинхронного электродвигателя с сетью является наличие больших пусковых токов, во время запуска электродвигателя.

Плавный пуск асинхронного электродвигателя

В задачах, где не требуется регулировка скорости электродвигателя во время работы для уменьшения пусковых токов используется устройство плавного пуска.

Устройство плавного пуска защищает асинхронный электродвигатель от повреждений вызванных резким увеличением потребляемой энергии во время пуска путем ограничения пусковых токов. Устройство плавного пуска позволяет обеспечить плавный разгон и торможение асинхронного электродвигателя.

Устройство плавного пуска дешевле и компактнее частотного преобразователе. Применяется там, где регулировка скорости вращения и момента требуется только при запуске.

Частотное управление асинхронным электродвигателем

Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.

    Использование частотного преобразователя позволяет:
  • уменьшить энергопротребление электродвигателя;
  • управлять скоростью вращения электродвигателя (плавный запуск и остановка, регулировка скорости во время работы);
  • избежать перегрузок электродвигателя и тем самым увеличить его срок службы.
    В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем: ; .

Трехфазный асинхронный двигатель с фазным ротором

Асинхронный двигатель с фазным ротором — асинхронный двигатель, у которого обмотка ротора присоединена к контактным кольцам 1.

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M

Обозначение выводов обмоток ротора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка 0
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Пример: Допустим электродвигатель был подключен по схеме «звезда» к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А. Полная потребляемая мощность:

S3 — повторно-кратковременный периодический режим

Режим S3

Режим S3

Последовательность режимов S2, повторяющихся с определенной частотой. При этом двигатель работает с неизменной нагрузкой, время покоя сменяется временем работы. То пуска не влияет на установившуюся температуру.

После обозначения S3 в маркировке указывается коэффициент циклической продолжительности включения (К=∆tр/Т) в процентах.

S4 — режим S3 с пусками

Режим S4

Режим S4

В этом режиме продолжительность работы становится соизмеримой с продолжительностью пуска. В результате цикл работы выглядит так: «пуск-работа-остановка». Он циклически повторяется.

Параметрами режима являются:

  • коэффициент К=∆tр/Т;
  • момент инерции двигателя (Jд), в кг∙м 2
  • момент инерции нагрузки (Jн), в кг∙м 2

Их значения указываются после знака S4.

Часто характеристики, соответствующие генераторному скольжению, будут располагаться во втором квадрате (II). Поэтому данному режиму будут соответствовать значения скольжения от “0” до “-

Продолжительный режим S1

1. Продолжительный режим S1 — когда при неизменной номинальной нагрузке Рном работа двигателя продолжается так долго, что температура перегрева всех его частей успевает достигнуть установившихся значений τуст (тау установившееся).

Различают продолжительный режим с неизменной нагрузкой Р = const (рис. 2.11, а) и продолжительный режим с изменяющейся нагрузкой (рис.2.11, б). Например, электроприводы насосов, транспортеров, вентиляторов работают в продолжительном режиме с неизменной нагрузкой, а электроприводы прокатных станков, металлорежущих станков и т.п. работают в продолжительном режиме с изменяющейся нагрузкой.

1

Кратковременный режим S2

2. Кратковременный режим S2 — когда периоды неизменной номинальной нагрузки чередуются с периодами отключения двигателя (рис. 2.11, в).
При этом периоды работы (нагрузки) двигателя настолько кратковременны, что температуры нагрева всех частей двигателя не достигают установившихся значений, а периоды отключения двигателя настолько продолжительны, что все части двигателя успевают охладиться до температуры окружающей среды (допускается превышение температуры не более чем на 1 ºС).

Стандартом установлена длительность периодов нагрузки 10; 30; 60 и 90 мин. В условном обозначении кратковременного режима указывается продолжительность периода нагрузки, например S2 — 30 мин.

В кратковременном режиме работают электроприводы шлюзов, разного рода заслонок, вентилей и других запорных устройств, регулирующих подачу рабочего вещества (нефть, газ, вода и др.) посредством трубопровода к объекту потребления.

Оцените статью