Для двигателей на одну фазу с небольшой мощностью можно использовать приборы изменения электрической мощности. Плюсы такого варианта в надёжности, а минусы заключаются в низком коэффициенте полезного действия, перегреве двигателя и полного отключения асинхронного двигателя.
Способы регулировки оборотов вращения асинхронных двигателей
Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании. Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются. Между этими активными элементами обеспечивается конструктивный воздушный зазор.
И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.
Двигатели с короткозамкнутым ротором (АДКР)
Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами). Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой. Обмотка статора подключается с использованием схем «треугольника» или «звезды».
Двигатели с фазным ротором
К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.
Устройство асинхронного электродвигателя
Различают 2 основных типа асинхронных электрических машин с фазным и короткозамкнутым ротором. Конструкция последних показана на рисунке:
Двигатель состоит из вращающегося ротора, неподвижного статора, корпуса и станины. В статор уложена трехфазная обмотка с угловым расстоянием 120 °, соединенная по схеме «звезда» или «треугольник».
Конструкция ротора – так называемая «беличья клетка» состоит из стержней загнутых между 2 кольцами.
При подаче напряжения на обмотки статора возникает магнитное поле, которое наводит ток во вращающейся части, при взаимодействии полей ротор начинает вращаться в ту же сторону, что и магнитное поле статора. Частота вращения подвижной части несколько отстает от скорости вращения поля, эта разность называется скольжением.
Электрические машины с фазным ротором отличаются конструкций вращающейся части. В ней уложена трехфазная обмотка, соединенная по схеме «звезда» и подключенная к регулировочному реостату. Таким образом, ток в ней можно регулировать, изменяя частоту вращения и момент.
Конструкция двигателей с фазным ротором более сложная, к преимуществам таких электрических машин относят улучшенные пусковые характеристики.
Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:
Принцип работы и число оборотов асинхронных двигателей
Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°. После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться. Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.
Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:
где f – частота сетевого напряжения, Гц, р – число полюсных пар статора.
Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:
- Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже),
- Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:
где 2p – число полюсов, Z1 – количество пазов в сердечнике статора, y – собственно, шаг укладки обмотки.
Стандартные значения оборотов:
- Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:
2p = 0,35Z1b / h или 2p = 0,5Di / h,
где 2p – число полюсов, Z1 – количество пазов в статоре, b – ширина зубца, см, h – высота спинки, см, Di – внутренний диаметр, образованный зубцами сердечника, см.
После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.
Способы изменения оборотов двигателя
Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:
- Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором,
- Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.
Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).
Чаще всего выбирают электрическое управление. Такое управление возможно благодаря силе тока, уровню напряжения в сети и частоте тока, которые влияют на работу электрического двигателя.
Схемы регуляторов оборотов асинхронного двигателя
Для двигателей повседневного предназначения легко можно выполнить необходимые расчеты, и своими руками произвести сборку устройства на полупроводниковой микросхеме. Пример схемы регулятора электродвигателя приведён ниже. Такая схема позволяет добиться контроля параметров приводной системы, затрат на техническое обслуживание, снижения потребления электричества наполовину.
Принципиальная схема регулятора оборотов вращения ЭД для повседневных нужд значительно упрощается, если применить так называемый симистор.
Обороты вращения ЭД регулируются с помощью потенциометра, определяющего фазу входного импульсного сигнала, открывающего симистор. На изображении видно, что в качестве ключей применяются два тиристора, подключённых встречно-параллельно. Тиристорный регулятор оборотов ЭД 220 В достаточно часто применяется для регулирования такой нагрузки, как диммеры, вентиляторы и нагревательная техника. От оборотов вращения асинхронного ЭД зависят технические показатели и эффективность работы двигательного оборудования.
Заключение
На технорынке сегодня предлагаются в большом ассортименте регуляторы и частотные преобразователи для асинхронных электродвигателей переменного тока.
Управление способом варьирования частоты на данный момент – самый оптимальный способ, т. к. он позволяет плавно регулировать скорость асинхронного ЭД в широчайшем диапазоне, без значительных потерь и снижения перегрузочных способностей.
Тем не менее, на основе расчёта, можно самостоятельно собрать простое и эффективное устройство с регулированием оборотов вращения однофазных электродвигателей с помощью тиристоров.
Этот способ также применяется для АД с КЗ ротором. Асинхронный двигатель подключается через автотрансформатор или ЛАТР. Если уменьшать напряжение питания, частота вращения двигателя снизится.
Потенциал экономии: считаем вместе
На основании данных, предоставленных компанией Mitsubishi Electric, оценим потенциал энергосбережения при внедрении преобразователей частоты.
Вначале посмотрим, как меняется мощность при различных режимах регулирования двигателя:
А теперь приведем пример расчета.
КПД электродвигателя: 96,5%;
КПД частотно-регулируемого привода: 97%;
Мощность на валу вентилятора при номинальном объеме: 1100 кВт;
Характеристика вентилятора: H=1,4 о.е. при Q=0;
Полное рабочее время за год: 8000 ч.
Режимы работы вентилятора согласно графику:
Из графика получаем следующие данные:
100% расхода воздуха – 20% времени работы за год;
70% расхода воздуха – 50% времени работы за год;
50% расхода воздуха – 30% времени работы за год.
Экономия между работой под номинальной нагрузкой и работой с возможностью регулирования скорости вращения двигателя (работа совместно с ЧРП) равна:
7 446 400 кВт*ч/год — 3 846 400 кВт*ч/год= 3 600 000 кВт*ч/год
Учтем тариф на электроэнергию равным — 1 кВт*ч / 5,5 руб. Стоит отметить, что стоимость взята по первой ценовой категории и усредненному значению для одного из промышленных предприятий Приморского края за 2019 г.
Получим экономию в денежном выражении:
3 600 000 кВт*ч/год*5,5 руб/кВт*ч= 19 800 000 руб/год
Практика реализации подобных проектов позволяет с учетом затрат на эксплуатацию и ремонты, а также стоимости самих преобразователей частоты добиться срока окупаемости в 3 года.
Как показывают цифры, в экономической целесообразности внедрения ЧРП сомневаться не приходится. Однако одной экономикой эффект от их внедрения не ограничивается. ЧРП осуществляют плавный пуск двигателя, значительно уменьшая его износ, но об этом я расскажу в следующий раз.
И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.
Двигатели с ротором на фазу и регулирование их скорости оборотов
При этих способах используют изменение скольжения, но варианты тоже могут быть разными.
Регулировка напряжения
Асинхронный двигатель подключается с помощью автотрансформатора. При уменьшении напряжения число оборотов, соответственно, станет меньше.
Этот вариант уменьшит перегрузочную способность асинхронного движка. Изменять напряжение можно только в пределах допустимого значения, поскольку выход из этого значение приведёт к поломке электрического двигателя.
Контроль сопротивления в роторе
Этот вариант подразумевает подключение резисторов к ротору. Это поможет плавно увеличить сопротивление.
Скольжение при этом вырастет, а скорость вращения, наоборот, станет ниже.
Плюсом является широкий диапазон регулирования с позиции уменьшения скорости оборотов.
Минусы: низкий коэффициент полезного действия и нестабильные механические характеристики.
Контроль с помощью двойной подпитки
Изменяется скольжение, влияющее на количество оборотов в промежуток времени, хотя скорость магнитного поля не изменится. Энергия в такой цепи будет подаваться на обмотки. Сам контроль произойдёт посредством силы скольжения, трансформированного в ротор с добавочной электродвижущей силой.
Такой вариант применим для габаритных машин с самыми мощными двигателями.
Мягкий старт начала работы
У АД есть свои минусы. Например, старт начинается слишком резко, что может привести к поломке в случае, если пусковой ток превысит значение напряжения.
Для того чтобы начать работу более медленно, есть разные варианты:
- обмотки переключаются по принципу звезды-треугольника;
- начать работу можно через автоматический трансформатор;
- для запуска используют специальные устройства.
Сегодня на многих регуляторах частоты присутствует возможность медленного начала раскрутки. Пусковой ток снизится вместе с общей нагрузкой на АД. Частота и начало работы тесно связаны друг с другом.